Info über 3D Adaptive Clearing



Zugriff:

Multifunktionsleiste: Registerkarte CAM Gruppe 3D-Fräsen Adaptiv

3D Adaptive Clearing ist eine Schruppstrategie zur effektiven Bearbeitung großer Materialmengen. Die Strategie garantiert wie keine andere eine maximale Werkzeuglast in allen Etappen des Bearbeitungszyklus und ermöglicht tiefe Schnitte mit der Werkzeugflanke ohne Bruchrisiko.

Bei der Strategie wird zunächst eine Reihe von konstanten Z-Ebenen durch das Bauteil erstellt, die dann in Etappen von unten nach oben freigeräumt werden. Wegen der möglichen hohen Schnitttiefe muss die erste Tiefenzustellung auf jeder Etappe der effektiven Schnittlänge des Werkzeugs entsprechen. Das Freiräumen der mittleren Ebenen wird dann in die flacheren Ebenen fortgesetzt, um das Werkzeug möglichst effizient zu nutzen.

Diese Strategie ist überaus effektiv bei der Bearbeitung von Kernen, da sie beim Bearbeiten von außen nach innen in Richtung der fertigen Form des Bauteils die Form des ursprünglichen Rohteils optimal nutzt.

3D Adaptive Clearing eignet sich auch hervorragend für die Restmaterialbearbeitung, wenn ein Großteil des Materials durch ein vorheriges größeres Werkzeug entfernt wurde und zur Bearbeitung der feineren Details ein kleineres Werkzeug benötigt wird. Bei Auswahl eines vorherigen Werkzeugwegs berücksichtigt diese Strategie den Status des Rohteils nach den ausgewählten Operationen und beschränkt die Bearbeitung auf die noch nicht bearbeiteten Bereiche.



Rückzugsebenen in einem 3D Adaptive Clearing-Werkzeugweg. Die Zahlen geben die Reihenfolge an, in der die Z-Ebenen bearbeitet werden.

Richtlinien für Schnittbedingungen

Stahl

Die Schnitttiefe kann der Schneidenlänge des Werkzeugs entsprechen. Bis zu 20 % des Werkzeugdurchmessers können zur Seitenzustellung verwendet werden.

Gehärteter Stahl

Die Schnitttiefe kann maximal der Schneidenlänge des Werkzeugs entsprechen. Die Seitenzustellung muss auf 5 % des Werkzeugdurchmessers beschränkt sein.

Aluminium

Die Schnitttiefe sollte das Anderthalb- bis Zweifache des Werkzeugdurchmessers betragen (kann aber maximal der Schneidenlänge entsprechen). Es wird eine Seitenzustellung von 30 % des Werkzeugdurchmessers empfohlen. Unter bestimmten Umständen sind auch bis zu 50 % des Werkzeugdurchmessers möglich.

Diese Werte gelten für Fräser, die zum Schruppen geeignet sind. Mehrschneidige Fräser dürfen maximal auf die Hälfte der oben genannten Seitenzustellungen eingestellt werden.

Einstellungen auf der Registerkarte Werkzeug + Informationen



Kühlmittel:

Der mit dem Werkzeug verwendete Kühlmitteltyp

Spindeldrehzahl:

Die Drehzahl der Spindel

Schnittgeschwindigkeit:

Die Spindeldrehzahl, ausgedrückt als die Oberflächengeschwindigkeit des Werkzeugs

Rampendrehzahl:

Die Drehzahl der Spindel beim Ausführen von Rampenbewegungen

Schneidenvorschub:

Der bei Schnittbewegungen verwendete Vorschub

Vorschub pro Zahn:

Der Schneidenvorschub, ausgedrückt als Vorschub pro Zahn

Einfahrvorschub:

Der bei der Einfahrt in eine Schnittbewegung verwendete Vorschub

Ausfahrvorschub:

Der bei der Ausfahrt aus einer Schnittbewegung verwendete Vorschub

Rampenvorschub:

Der bei helikalen Rampenbewegungen in das Rohteil verwendete Vorschub

Eintauchvorschub:

Der beim Eintauchen in das Rohteil verwendete Vorschub

Vorschub/Umdrehung:

Der Eintauchvorschub, ausgedrückt als Vorschub pro Umdrehung

Schaft und Halter

Bei Verwendung eines Werkzeugs mit Halter können Sie, je nach der Bearbeitungsstrategie, zwischen fünf verschiedenen Schaft/Halter-Modi wählen. Kollisionsbehandlung kann sowohl für den Schaft als auch den Halter des Werkzeugs erfolgen, und es können jeweils eigene Sicherheitsabstände eingestellt werden.

Schaft:

Legt fest, dass der Schaft des ausgewählten Werkzeugs bei der Werkzeugwegberechnung herangezogen wird, um Kollisionen zu vermeiden.

Sicherheitsabstand Werkzeugschaft:

Der Werkzeugschaft hält immer diesen Abstand zum Bauteil ein.

Halter:

Legt fest, dass der Halter des ausgewählten Werkzeugs bei der Werkzeugwegberechnung herangezogen wird, um Kollisionen zu vermeiden.

Sicherheitsabstand Halter:

Der Werkzeughalter hält immer diesen Abstand zum Bauteil ein.

Einstellungen auf der Registerkarte Geometrie



Begrenzungskontur:

Der Begrenzungsmodus gibt an, wie die Begrenzung des Werkzeugwegs definiert wird. Die folgenden Bilder zeigen einen radialen 3D-Werkzeugweg.



Beispiel 1



Beispiel 2

Begrenzungsmodi:

Werkzeugbegrenzung

Die Werkzeugbegrenzung wird verwendet, um die Position des Werkzeugs in Bezug zu einer oder mehreren ausgewählten Begrenzungen zu kontrollieren.

Innen

Das gesamte Werkzeug bleibt innerhalb der Begrenzung. Dies könnte dazu führen, dass die gesamte innerhalb der Begrenzung liegende Oberfläche nicht bearbeitet wird.



Innen

Zentrum

Die Begrenzung grenzt das Zentrum des Werkzeugs ein. Diese Einstellung stellt sicher, dass die gesamte Oberfläche innerhalb der Begrenzung bearbeitet wird. Es könnten jedoch auch Bereiche außerhalb der Begrenzung(en) bearbeitet werden.



Zentrum

Außen

Der Werkzeugweg wird innerhalb der Begrenzung erstellt, aber der Werkzeugrand kann sich auf dem äußeren Rand der Begrenzung bewegen.



Außen

Um die Begrenzung zu versetzen, verwenden Sie den Parameter Zusätzlicher Versatz.

Zusätzlicher Versatz:

Der zusätzliche Versatz wird auf die ausgewählte(n) Begrenzung(en) und die Werkzeugbegrenzung angewendet.

Bei einem positiven Wert wird die Begrenzung nach außen versetzt. Ist allerdings die Werkzeugbegrenzung auf Innen festgelegt, führt ein positiver Wert zu einem Versatz nach innen.



Negativer Versatz mit Werkzeugzentrum auf Begrenzung



Kein Versatz mit Werkzeugzentrum auf Begrenzung



Positiver Versatz mit Werkzeugzentrum auf Begrenzung

Um sicherzustellen, dass der Werkzeugrand die Begrenzung überlappt, wählen Sie die Werkzeugbegrenzungsmethode Außen und geben einen niedrigen positiven Wert an.

Um sicherzustellen, dass der Werkzeugrand die Begrenzung nicht berührt, wählen Sie die Werkzeugbegrenzungsmethode Innen und geben einen niedrigen positiven Wert an.

Restmaterialbearbeitung:

Beschränkt die Operation darauf, nur Material zu entfernen, das von einem vorherigen Werkzeug oder bei einer vorherigen Operation nicht entfernt werden konnte.



Restmaterialbearbeitung EIN



Restmaterialbearbeitung AUS

Restmaterialquelle:

Gibt die Quelle an, auf deren Grundlage die Restmaterialbearbeitung berechnet werden soll.

Von Setup-Rohteil

Alle verbundenen Operationen verknüpfen

Alle verbundenen Operationen verknüpfen.

Alle vorhergehenden Operationen einschließen

Alle vorhergehenden Operationen einschließen

Werkzeugdurchmesser:

Gibt den Durchmesser des Werkzeugs für die Restmaterialbearbeitung an.

Eckradius:

Gibt den Eckradius des Werkzeugs für die Restmaterialbearbeitung an.

Konuswinkel:

Gibt den Konuswinkel des Werkzeugs für die Restmaterialbearbeitung an.

Schulterlänge:

Gibt die Schulterlänge des Werkzeugs für die Restmaterialbearbeitung an.

Datei:

Gibt die Restmaterialdatei an.

Anpassung:

Wählt die Restmaterialanpassung zum Ignorieren bzw. Sicherstellen des Fräsens kleiner Überhöhungen aus.

Offset-Einstellung:

Dieser Parameter gibt abhängig von der Einstellung Restmaterial anpassen den zu ignorierenden oder zusätzlich zu entfernenden Betrag des Rohteils an. Der Parameter dient in erster Linie dazu, mit der Einstellung Überhöhungen ignorieren die Bearbeitung von geringfügigem Restmaterial zu verhindern.

Werkzeugorientierung

Gibt an, wie mithilfe einer Kombination aus Dreiergruppenausrichtungs- und Ursprungsoptionen die Werkzeugorientierung bestimmt wird.

Das Dropdown-Menü Werkzeugansicht stellt die folgenden Optionen zum Festlegen der Ausrichtung der X-, Y- und Z-Dreiergruppenachsen bereit:

Das Dropdown-Menü Ursprung bietet die folgenden Optionen zum Lokalisieren des Dreiergruppenursprungs:

Modell

Aktivieren Sie diese Option zum Überschreiben der Modellgeometrie (Oberflächen/Körper), die im Setup definiert ist.

Setup-Modell einbeziehen

Diese vorgabemäßig aktivierte Option sorgt dafür, dass das im Setup ausgewählte Modell zusätzlich zu den in der Operation ausgewählten Modellflächen einbezogen wird. Wenn Sie dieses Kontrollkästchen deaktivieren, wird der Werkzeugweg nur für die in der Operation ausgewählten Flächen erzeugt.

Einstellungen auf der Registerkarte Höheneinstellungen



Sicherheitshöhe

Die Sicherheitshöhe ist die erste Höhe, die das Werkzeug auf seinem Weg zum Beginn des Werkzeugwegs per Eilgang ansteuert.



Sicherheitshöhe

Sicherheitshöhen-Offset:

Der Sicherheitshöhen-Versatz wird in Abhängigkeit von der in der oben stehenden Dropdown-Liste ausgewählten Sicherheitshöhe angewendet.

Rückzugshöhe

Mit der Rückzugshöhe wird die Höhe festgelegt, zu der das Werkzeug nach oben verschoben wird, bevor die nächste Schnittbewegung erfolgt. Der Wert für die Rückzugshöhe muss über dem Wert für Vorschubhöhe und Oberkante liegen. Die Rückzugshöhe wird zusammen mit dem nachfolgenden Versatz zum Festlegen der Höhe verwendet.



Rückzugshöhe

Rückzugshöhen-Offset:

Der Rückzugshöhenversatz wird in Abhängigkeit von der in der oben stehenden Dropdown-Liste ausgewählten Rückzugshöhe angewendet.

Oberkante/Anfangshöhe der Bearbeitung

Über Obere Höhe wird die Höhe festgelegt, die die Oberkante des Schnitts beschreibt. Der Wert für Obere Höhe muss über dem Wert für Unterkante liegen. Die obere Höhe wird zusammen mit dem nachfolgenden Versatz zum Festlegen der Höhe verwendet.



Oberkante/Anfangshöhe der Bearbeitung

Oberkanten-Offset:

Der Versatz Oben wird in Abhängigkeit von der in der oben stehenden Dropdown-Liste ausgewählten oberen Höhe angewendet.

Endtiefe der Bearbeitung

Die Endhöhe bestimmt die Endhöhe/-tiefe der Bearbeitung und die niedrigste Tiefe, auf die das Werkzeug in das Rohteil abgesenkt wird. Der Wert für Endhöhe muss unter dem Wert für Oberkante liegen. Die Endhöhe wird zusammen mit dem nachfolgenden Versatz zum Festlegen der Höhe verwendet.



Endtiefe der Bearbeitung

Unterkanten-Offset:

Der Versatz Unten wird in Abhängigkeit von der in der oben stehenden Dropdown-Liste ausgewählten Endtiefe angewendet.

Einstellungen auf der Registerkarte Strategieeinstellungen



Toleranz:

Die Bearbeitungstoleranz ist die Summe der für die Neuberechnung der Werkzeugwege und für die Geometrietriangulation verwendeten Toleranzen. Eventuelle zusätzliche Filtertoleranzen müssen zu dieser Toleranz hinzugefügt werden, um die Gesamttoleranz zu erhalten.



Hohe Toleranz 0,100



Niedrige Toleranz 0,001

Die Konturbewegung der CNC-Maschine wird über den Linienbefehl G1 und die Bogenbefehle G2 und G3 gesteuert. Hierfür gleicht CAM die Spline- und Flächen-Werkzeugwege durch Linearisieren an, wobei viele kurze Liniensegmente erstellt werden, um sich der gewünschten Form anzunähern. Wie genau der Werkzeugweg der gewünschten Form entspricht, hängt weitgehend von der Anzahl der verwendeten Linien ab. Je mehr Linien, desto enger nähert sich der Werkzeugweg der Nennform des Splines oder der Fläche an.

Data Starving

Es ist verlockend, immer sehr enge Toleranzen zu verwenden, aber dies muss gegen gewisse Aspekte abgewogen werden, wie z. B. längere Zeiten für die Werkzeugwegberechnung, große G-Code-Dateien und sehr kurze Linearbewegungen. Die ersten beiden Aspekte stellen kein großes Problem dar, da Inventor HSM Berechnungen sehr schnell durchführt und die meisten modernen Steuerungen über mindestens 1 MB RAM verfügen. Die kurzen Linearbewegungen können jedoch in Verbindung mit hohen Vorschubgeschwindigkeiten zu einem Phänomen führen, das als Data Starving bekannt ist.

Data Starving tritt auf, wenn die Steuerung so stark mit Daten überflutet wird, dass sie die Verarbeitung nicht bewältigen kann. CNC-Steuerungen können nur eine begrenzte Anzahl von Codezeilen (Blöcken) pro Sekunde verarbeiten. Die Bandbreite reicht von gerade einmal 40 Blöcken/Sekunde auf älteren Maschinen bis zu 1.000 Blöcken/Sekunde und mehr auf neueren Maschinen wie der Haas Automation-Steuerung. Kurze Linearbewegungen und hohe Vorschubgeschwindigkeiten können die Verarbeitungsrate derart erhöhen, dass die Steuerung überfordert ist. Wenn dies geschieht, muss die Maschine nach jeder Bewegung anhalten und auf den nächsten Servobefehl von der Steuerung warten.

Flache Bereiche bearbeiten

Gibt an, dass in ebenen Bereichen zusätzliche Z-Ebenen geschnitten werden sollen. Die folgenden beiden Abbildungen zeigen einen Werkzeugweg mit 3D-Kontur.



Deaktiviert



Aktiviert

Minimale Tiefenzustellung in Flachbereichen:

Dieser Parameter steuert die minimal zulässige Tiefenzustellung zwischen den zusätzlichen Z-Ebenen. Dieser Parameter hat Vorrang vor dem Parameter Maximale Querzustellung in Flachbereichen.

Maximale Querzustellung in Flachbereichen:

Dieser Parameter steuert die Zustellung zum Erkennen von Bereichen, in denen zusätzliche Z-Ebenen eingefügt werden sollen. Wenn die normale Tiefenzustellung zu einer Querzustellung führt, die diesen Wert überschreitet, werden zusätzliche Ebenen eingefügt, bis die Querzustellung oder die minimale Tiefenzustellung erreicht ist.

Optimale Zustellung:

Gibt den Betrag des Materialeingriffs an, den die adaptiven Strategien beibehalten müssen.

Anmerkung: Ältere Freiräum-Werkzeugwege erzeugen einen ungleichmäßigen Werkzeugeingriff während der Freiräumoperation. Mit einer 3D Adaptive Clearing-Strategie können um 40 % schnellere Materialabtrennungsraten erzielt werden, da größere Tiefenschnitte möglich sind ohne das Risiko, dass beim Werkzeugeingriff Spitzen am Fräser auftreten, die ihn beschädigen könnten.


Freiräum-Werkzeugweg mit hoher Drehzahl



Älterer Freiräum-Werkzeugweg

Minimaler Schneidenradius:



Mit festgelegtem minimalem Schneidenradius

Mit festgelegtem minimalem Schneidenradius - Scharfe Ecken im Werkzeugweg werden vermieden, wodurch Rattern in fertigen Bauteilen auf ein Mindestmaß reduziert wird.



Ohne festgelegten minimalen Schneidenradius

Ohne festgelegten minimalen Schneidenradius - Das Werkzeug versucht, auf dem Werkzeugweg überall dort Material freizuräumen, wo es hinreichen kann. Dies erzeugt scharfe Ecken im Werkzeugweg, die im bearbeiteten Bauteil häufig zu Rattern führen.

Anmerkung: Wenn dieser Parameter festgelegt wird, verbleibt mehr Material in Innenecken, sodass zur Restmaterialbearbeitung nachfolgende Operationen mit einem kleineren Werkzeug nötig sind.

Taschenbearbeitung

Aktivieren Sie diese Option, wenn Sie ausgewählte geschlossene Konturen innen bearbeiten möchten.

Deaktivieren Sie diese Option, wenn Sie ausgewählte geschlossene Konturen außen bearbeiten möchten.

Offene Konturen können nur abgearbeitet werden, wenn diese Option aktiviert ist.



Taschenbearbeitung aktiviert



Taschenbearbeitung deaktiviert

Nuten-Freiräumen verwenden

Aktivieren Sie diese Einstellung, um die Tasche erst mit einer Nut entlang der Mitte trochoidal freizuräumen und anschließend im Spiralmodus bis zur Taschenwand abzuarbeiten.

Diese Funktion kann verwendet werden, um bei einigen Taschen Verlinkungen in den Ecken zu reduzieren.



Nuten-Freiräumen verwenden aktiviert



Nuten-Freiräumen verwenden deaktiviert

Nuten-Freiräum-Breite:

Gibt die Breite der trochoidal zu bearbeitenden Nut entlang der Taschenmitte an, bevor die Tasche bis zur Taschenwand im Spiralmodus abgearbeitet wird.



Nuten-Freiräum-Breite

Richtung:

Über die Option Richtung können Sie steuern, ob Inventor HSM versuchen soll, entweder Gleichlauf- oder Gegenlauffräsen beizubehalten.

Hinweis: Abhängig von der Geometrie ist es nicht immer möglich, Gleichlauf- oder Gegenlauffräsen über den gesamten Werkzeugweg beizubehalten.

Gleichlauf

Wählen Sie Gleichlauf, um alle Durchgänge in einer einzigen Richtung zu bearbeiten. Bei Auswahl dieser Methode versucht Inventor HSM, Gleichlauffräsen relativ zu den ausgewählten Begrenzungen zu verwenden.



Gleichlauf

Gegenlauf

Hiermit wird die Richtung des Werkzeugwegs gegenüber der Einstellung Gleichlauf umgekehrt, um einen Gegenlauf-Werkzeugweg zu erzeugen.



Gegenlauf

Maximale Schrupp-Tiefenzustellung:

Bestimmt die maximale Tiefenzustellung zwischen Z-Ebenen beim Schruppen.



Maximale Tiefenzustellung - hier gezeigt ohne Schlichtzustellungen

Anmerkung: Sequenzielle Zustellungen auf der Z-Ebene erfolgen mit dem Wert der maximalen Tiefenzustellung. Die abschließende Schrupp-Tiefenzustellung wird auf das verbleibende Rohteil angewendet, sobald dieses unter dem Wert der maximalen Tiefenzustellung liegt.

Schlichttiefenzustellung:

Gibt die Schlichttiefenzustellung für Zwischenschritte an. Diese Schritte erfolgen nach oben in Richtung der Werkzeugachse.

Planbereiche finden

Wenn diese Option aktiviert ist, versucht die Strategie, die Höhen von flachen Bereichen und Spitzen zu erkennen und die Bearbeitung auf diesen Ebenen durchzuführen.

Ist die Option deaktiviert, erfolgt die Bearbeitung exakt bei den angegebenen Tiefenzustellungen.

Achtung: Durch Aktivieren dieser Funktion kann sich die Berechnungsdauer beträchtlich erhöhen.

Minimale Tiefenzustellung:

Verwendet beim Erkennen flacher Bereiche. Dies ist die kleinste zulässige einstellbare Tiefenzustellung.

Minimaler axialer Einfügungsbereich:

Aktivieren Sie diese Option, um sicherzustellen, dass während der Zwischenschritte mindestens eine Schneide beim Drehen immer aktiviert ist, um Vibrationen zu vermeiden und den Werkzeugverschleiß zu reduzieren.

Achtung: Durch Überspringen der Zwischenschritte bleibt zusätzliches Rohteilmaterial für die folgende Semi-Schrupp-Operation übrig.

Sortieren nach Tiefe

Gibt an, dass die Bearbeitung von oben nach unten durchgeführt wird.



Deaktiviert



Aktiviert

Sortieren nach Bereich

Werkzeugwege werden nach Bereich und nicht nach Tiefe sortiert.

Aufmaß



Positiv

Positives Aufmaß - Der nach einer Operation verbleibende Betrag des Rohteils, der mittels nachfolgender Schrupp- oder Schlichtoperationen zu entfernen ist. Bei Schruppoperationen bleibt vorgabemäßig ein geringer Materialbetrag zurück.



Keine

Kein Aufmaß - Sämtliches überschüssiges Material wird bis zur ausgewählten Geometrie entfernt.



Negativ

Negatives Aufmaß - Material wird über die Bauteilfläche oder -begrenzung hinaus entfernt. Dieses Verfahren wird häufig bei der Elektrodenbearbeitung zum Ermöglichen einer Funkenstrecke verwendet oder um Toleranzanforderungen eines Bauteils zu erfüllen.

Radiales (oberes) Aufmaß

Der Parameter Radiales Rohteil-Aufmaß steuert den Betrag des in der radialen Richtung (lotrecht zur Werkzeugachse), also an der Seite des Werkzeugs, zu belassenden Materials.



Radiales Rohteil-Aufmaß



Radiales und axiales Aufmaß

Die Angabe eines positiven radialen Rohteil-Aufmaßes führt dazu, dass Material an den vertikalen Wänden und steilen Bereichen des Bauteils zurückbleibt.

Bei nicht exakt vertikalen Flächen interpoliert Inventor HSM zwischen den Werten für axiales (unteres) und radiales Rohteil-Aufmaß, sodass das in radialer Richtung auf diesen Flächen verbleibende Rohteilmaterial je nach Flächenneigungswinkel und Wert für axiales Rohteil-Aufmaß vom angegebenen Wert abweichen könnte.

Bei einer Änderung des radialen Rohteil-Aufmaßes wird das axiale Rohteil-Aufmaß automatisch auf denselben Betrag festgelegt, sofern Sie das axiale Rohteil-Aufmaß nicht manuell eingeben.

Bei Schlichtoperationen ist der Vorgabewert 0 mm/0 Zoll, d. h., es bleibt kein Material zurück.

Bei Schruppoperationen bleibt vorgabemäßig ein geringer Materialbetrag zurück, der später durch eine oder mehrere Schlichtoperationen entfernt werden kann.

Negatives Aufmaß

Bei Verwendung eines negativen Aufmaßes wird bei der Bearbeitung mehr Material vom Rohteil entfernt als Ihre Modellform aufweist. Dies kann zum Bearbeiten von Elektroden mit einer Funkenstrecke verwendet werden, wobei die Funkenstrecke dem negativen axialen Aufmaß entspricht.

Sowohl das radiale als auch das axiale Aufmaß kann einen negativen Wert haben. Das negative radiale Aufmaß muss jedoch kleiner sein als der Werkzeugradius.

Bei Verwendung eines Kugel- oder Radienfräsers mit negativem radialem Aufmaß, das größer ist als der Eckradius, muss das negative axiale Aufmaß kleiner oder gleich dem Eckradius sein.

Axiales (unteres) Aufmaß

Der Parameter Axiales Rohteil-Aufmaß steuert den Betrag des in der axialen Richtung (entlang der Z-Achse), also am Ende des Werkzeugs, zu belassenden Materials.



Axiales Rohteil-Aufmaß



Sowohl radiales als auch axiales Rohteil-Aufmaß

Die Angabe eines positiven axialen Rohteil-Aufmaßes führt dazu, dass Material an den flachen Bereichen des Bauteils zurückbleibt.

Bei nicht exakt horizontalen Flächen interpoliert Inventor HSM zwischen den Werten für axiales und radiales (oberes) Rohteil-Aufmaß, sodass das in axialer Richtung auf diesen Flächen verbleibende Rohteilmaterial je nach Flächenneigungswinkel und Wert für radiales Rohteil-Aufmaß vom angegebenen Wert abweichen könnte.

Bei einer Änderung des radialen Rohteil-Aufmaßes wird das axiale Rohteil-Aufmaß automatisch auf denselben Betrag festgelegt, sofern Sie das axiale Rohteil-Aufmaß nicht manuell eingeben.

Bei Schlichtoperationen ist der Vorgabewert 0 mm/0 Zoll, d. h., es bleibt kein Material zurück.

Bei Schruppoperationen bleibt vorgabemäßig ein geringer Materialbetrag zurück, der später durch eine oder mehrere Schlichtoperationen entfernt werden kann.

Negatives Aufmaß

Bei Verwendung eines negativen Aufmaßes wird bei der Bearbeitung mehr Material vom Rohteil entfernt als Ihre Modellform aufweist. Dies kann zum Bearbeiten von Elektroden mit einer Funkenstrecke verwendet werden, wobei die Funkenstrecke dem negativen axialen Aufmaß entspricht.

Sowohl das radiale als auch das axiale Aufmaß kann einen negativen Wert haben. Wird jedoch ein Kugel- oder Radienfräser mit negativem radialem Aufmaß verwendet, das größer ist als der Eckradius, muss das negative axiale Aufmaß kleiner oder gleich dem Eckradius sein.

Rundungen

Ermöglicht die Eingabe eines Rundungsradius.

Rundungsradius:

Legen Sie einen Rundungsradius fest.

Glättungsfilter

Glättet den Werkzeugweg, indem überschüssige Punkte entfernt und Bogen innerhalb der definierten Filtertoleranz angepasst werden.



Glättungsfilter aus



Glättungsfilter ein

Die Glättung dient dazu, den Umfang des Codes zu verringern, ohne dass dies auf Kosten der Genauigkeit geht. Bei der Glättung werden kollineare Linien durch eine Linie und Tangentialbogen ersetzt, um mehrere Linien in gewölbten Bereichen zu ersetzen.

Die Auswirkungen des Glättungsfilters können beträchtlich sein. Die Größe der G-Code-Datei kann um 50 % oder mehr reduziert werden. Die Maschine läuft schneller und reibungsloser, und die Oberflächengüte wird verbessert. Der Umfang der Codereduzierung hängt davon ab, wie gut sich der Werkzeugweg für die Glättung eignet. Werkzeugwege, die primär in einer Hauptebene (XY, XZ, YZ) liegen, wie z. B. parallele Werkzeugwege, lassen sich gut filtern. Bei Werkzeugwegen, auf die dies nicht zutrifft (wie 3D-HSC-Kontur), ist die Reduzierung geringer.

Glättungstoleranz:

Gibt die Toleranz des Glättungsfilters an.

Die Glättung funktioniert am besten, wenn die Toleranz (die Genauigkeit, mit der der ursprüngliche, linearisierte Werkzeugweg generiert wird) größer oder gleich der Glättungstoleranz (Linien-/Bogenanpassung) ist.

Anmerkung: Die Gesamttoleranz, oder der Abstand, um den der Werkzeugweg von der idealen Spline- oder Flächenform abweichen kann, ist die Summe aus der Schneidtoleranz und der Glättungstoleranz. Beispiel: Wenn die Schneidtoleranz auf 0,0004 Zoll und die Glättungstoleranz auf 0,0004 Zoll festgelegt ist, kann der Werkzeugweg von der ursprünglichen Spline- oder Flächenform (dem idealen Werkzeugweg) um 0,0008 Zoll abweichen.

Vorschuboptimierung

Gibt an, dass der Vorschub an den Ecken reduziert werden soll.

Maximale Richtungsänderung:

Gibt die maximal zulässige Winkeländerung vor der Vorschubreduzierung an.

Radius zur Vorschubreduzierung:

Gibt den minimal zulässigen Radius vor der Vorschubreduzierung an.

Distanz zur Vorschubreduzierung:

Gibt den Abstand an, um den der Vorschub vor einer Ecke verringert wird.

Vorschubreduzierung:

Gibt den reduzierten Vorschub bei Ecken an.

Nur Innenecken

Aktivieren Sie diese Option, um den Vorschub nur an Innenecken zu reduzieren.

Einstellungen auf der Registerkarte Verbindungen und Anfahr-Wegfahrbewegungen



Rückzugsart:

Steuert, wie sich das Werkzeug zwischen Schnittdurchgängen bewegt. Die folgenden Abbildungen zeigen die Strategie Flow-U/V + 5-Achsen-Stirnen.

Bei CNC-Maschinen, die keine linearisierten Eilgang-Bewegungen unterstützen, kann der Postprozessor modifiziert werden, um alle G0-Bewegungen in G1-Bewegungen mit Schnellvorschub umzuwandeln. Wenden Sie sich an den Technischen Support, um weitere Informationen oder Anweisungen zum entsprechenden Modifizieren der Postprozessoren zu erhalten.

Schnellvorschub-Einstellungen:

Gibt an, wann Eilgang-Bewegungen als echte Eilgang-Bewegungen (G0) und wann als Schnellvorschub-Bewegungen (G1) ausgegeben werden sollen.

Dieser Parameter wird gewöhnlich festgelegt, um Kollisionen bei Eilgängen auf Maschinen zu vermeiden, die Führungsverlängerungsbewegungen im Eilgang durchführen.

Schnellvorschub:

Der zu verwendende Vorschub für als G1 statt als G0 ausgegebene Eilgang-Bewegungen

G0-Rückzug zulassen

Bei aktivierter Option erfolgen Rückzüge als Eilgang-Bewegungen (G0). Deaktivieren Sie die Option, um Rückzüge mit Ausfahrvorschub zu erzwingen.

Maximaler Flächenkontaktabstand:

Gibt den maximal zulässigen Abstand für Bewegungen mit Flächenkontakt an.



1 Zoll Maximaler Flächenkontaktabstand



2 Zoll Maximaler Flächenkontaktabstand

Flächenkontaktebene:

Verwenden Sie diese Einstellung, um zu steuern, wann beim Umfahren von Hindernissen der Flächenkontakt beibehalten und kein Rückzug stattfinden soll. In der Regel wird für die Strategie Adaptiv bei einem langsameren Rückzug Ihrer CNC-Maschine ein größerer Flächenkontakt empfohlen als bei Schnellvorschub-Bewegungen. Wählen Sie in solchen Fällen im Dropdown-Menü Flächenkontaktebene einen höheren Wert aus. Der Wert kann in Schritten von jeweils 10 % zwischen dem Minimum von 0 % und dem Maximum von 100 % erhöht werden.

Hinweis: Beachten Sie, dass die Berechnungsdauer deutlich zunehmen kann, wenn Sie den Wert für die Flächenkontaktebene anheben.

Abhebhöhe:

Gibt den Abhebe-Abstand während Neupositionierungsbewegungen an.



Abhebhöhe 0



Abhebhöhe 0,1 Zoll

Vorschub für Bereiche ohne Eingriff:

Gibt den verwendeten Vorschub für Bewegungen an, bei denen das Werkzeug keinen Materialeingriff hat, aber auch nicht zurückgezogen ist.

Horizontaler Einfahrradius:

Gibt den Radius für horizontale Einfahrbewegungen an.



Horizontaler Einfahrradius

Horizontaler Ausfahrradius:

Gibt den Radius für horizontale Ausfahrbewegungen an.



Horizontaler Ausfahrradius

Vertikaler Einfahrradius:

Der Radius des vertikalen Bogens zum Glätten der Einfahrbewegung, wenn diese zum Werkzeugweg selbst erfolgt



Vertikaler Einfahrradius

Vertikaler Ausfahrradius:

Gibt den vertikalen Ausfahrradius an.



Vertikaler Ausfahrradius

Rampentyp:

Gibt an, wie das Werkzeug bei jedem Tiefenschnitt abgesenkt wird.



Vorbohren

Anmerkung: Zum Verwenden der Option Vorbohren müssen ein oder mehrere Startbohrungspositionen definiert werden.


Tauchfräsen



Zick/Zack (Rampe)

Beachten Sie die glatten Übergänge beim Typ Zick/Zack (Rampe).



Profil



Profil glätten



Schrägung

Rampenwinkel (Grad):

Gibt den maximalen Rampenwinkel an.

Anstiegsverjüngungswinkel (Grad):

Der gewünschte Verjüngungswinkel der spiralförmigen Anstiege. Verwenden Sie diese Einstellung, um den Werkzeugschaft in einigem Abstand vom Rohteil zu halten, sodass bei Anstiegsbewegungen die Späne besser entweichen können.

Sicherheitshöhe Rampe:

Rampenhöhe über der aktuellen Rohteilebene.

Durchmesser Einfahrhelix:

Gibt den Durchmesser der Einfahrhelix an.

Minimaler Einfahrdurchmesser:

Gibt den minimalen Einfahrdurchmesser an.

Position(en) Startbohrung(en)

Schaltfläche zum Auswählen von Startbohrungspositionen

Anfahrposition(en)

Schaltfläche zum Auswählen von Anfahrpositionen